III.2. Живое вещество, его средообразующие свойства и функции в биосфере

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Живое вещество. Этот термин введен в литературу В. И. Вер­надским. Под ним он понимал совокупность всех живых организ­мов, выраженную через массу, энергию и химический состав.

Вещества неживой природы относятся к косным (например, ми­нералы). В природе, кроме этого, довольно широко представлены био­косные вещества, образование и сложение которых обусловливает­ся живыми и косными составляющими (например, почвы, воды).

Живое вещество - основа биосферы, хотя и составляет крайне незначительную ее часть. Если его выделить в чистом виде и рас­пределить равномерно по поверхности Земли, то это будет слой около 2 см или крайне незначительная доля от объема всей био­сферы, толща которой измеряется десятками километров. В чем же причина столь высокой химической активности и геологической роли живого вещества?

Прежде всего это связано с тем, что живые организмы, благо­даря биологическим катализаторам (ферментам), совершают, по выражению академика Л. С. Берга, с физико-химической точки зре­ния что-то невероятное. Например, они способны фиксировать в своем теле молекулярный азот атмосферы при обычных для при­родной среды значениях температуры и давления. В промышлен­ных условиях связывание атмосферного азота до аммиака требует температуры порядка 500°С и давления 300-500 атмосфер.

В живых организмах на порядок или несколько порядков увели­чиваются скорости химических реакций в процессе обмена веществ. В. И. Вернадский в связи с этим живое вещество назвал чрезвы­чайно активизированной материей.

Свойства живого вещества. К основным уникальным особен­ностям живого вещества, обусловливающим его крайне высокую средообразующую деятельность, можно отнести следующие:

1. Способность быстро занимать (осваивать) все свобод­ное пространство. В. И. Вернадский назвал это всюдностью жиз­ни. Данное свойство дало основание В. И. Вернадскому сделать вывод, что для определенных геологических периодов количество живого вещества было примерно постоянным (константой). Спо­собность быстрого освоения пространства связана как с интенсив­ным размножением (некоторые простейшие формы организмов могли бы освоить весь земной шар за несколько часов или дней, если бы не было факторов, сдерживающих их потенциальные воз­можности размножения), так и со способностью организмов ин­тенсивно увеличивать поверхность своего тела или образуемых ими сообществ. Например, площадь листьев растений, произрастаю­щих на 1 га, составляет 8-10 га и более. То же относится к корне­вым системам.

2. Движение не только пассивное (под действием силы тяже­сти, гравитационных сил и т. п.), но и активное. Например, против течения воды, силы тяжести, движения воздушных потоков и т. п.

3. Устойчивость при жизни и быстрое разложение после смерти (включение в круговороты), сохраняя при этом высокую физико-химическую активность.

4. Высокая приспособительная способность (адаптация) к различным условиям и в связи с этим освоение не только всех сред жизни (водной, наземно-воздушной, почвенной, организменной), но и крайне трудных по физико-химическим параметрам условий. Например, некоторые организмы выносят температуры, близ­кие к значениям абсолютного нуля - 273°С, микроорганизмы встре­чаются в термальных источниках с температурами до 140°С, в водах атомных реакторов, в бескислородной среде, в ледовых пан­цирях и т. п.

5. Феноменально высокая скорость протекания реакций. Она на несколько порядков (в сотни, тысячи раз) значительнее, чем в неживом веществе. Об этом свойстве можно судить по скорости переработки вещества организмами в процессе жизне­деятельности. Например, гусеницы некоторых насекомых потреб­ляют за день количество пищи, которое в 100-200 раз больше веса их тела. Особенно активны организмы-грунтоеды. Дождевые чер­ви (масса их тел примерно в 10 раз больше биомассы всего чело­вечества) за 150-200 лет пропускают через свои организмы весь однометровый слой почвы. Такие же явления имеют место в дон­ных отложениях океана. Слой донных отложений здесь может быть представлен продуктами жизнедеятельности кольчатых чер­вей (полихет) и достигать нескольких метров. Колоссальную роль по преобразованию вещества выполняют организмы, для кото­рых характерен фильтрационный тип питания. Они освобождают водные массы от взвесей, склеивая их в небольшие агрегаты и осаждая на дно.

Впечатляют примеры чисто механической деятельности неко­торых организмов, например роющих животных (сурков, сусликов и др.), которые в результате переработки больших масс грунта со­здают своеобразный ландшафт. По представлениям В. И. Вернад­ского, практически все осадочные породы, а это слой до 3 км, на 95-99% переработаны живыми организмами. Даже такие колос­сальные запасы воды, которые имеются в биосфере, разлагаются в процессе фотосинтеза за 5-6 млн. лет, углекислота же проходит через живые организмы в процессе фотосинтеза каждые 6-7 лет.

6. Высокая скорость обновления живого вещества. Под­считано, что в среднем для биосферы она составляет 8 лет, при этом для суши -14 лет, а для океана, где преобладают организмы с коротким периодом жизни (например, планктон), - 33 дня. В ре­зультате высокой скорости обновления за всю историю существо­вания жизни общая масса живого вещества, прошедшего через био­сферу, примерно в 12 раз превышает массу Земли. Только неболь­шая часть его (доли процента) законсервирована в виде органичес­ких остатков (по выражению В. И. Вернадского, «ушла в геоло­гию»), остальная же включилась в процессы круговорота.

Все перечисленные и другие свойства живого вещества обус­ловливаются концентрацией в нем больших запасов энер­гии. Согласно В. И. Вернадскому, по энергетической насыщеннос­ти с живым веществом может соперничать только лава, образую­щаяся при извержении вулканов.

Средообразующие функции живого вещества. Всю деятель­ность живых организмов в биосфере можно, с определенной долей условности, свести к нескольким основополагающим функциям, которые позволяют значительно дополнить представление об их пре­образующей биосферно-геологической роли.

В. И. Вернадский выделял девять функций живого вещества: газовую, кислородную, окислительную, кальциевую, восстановитель­ную, концентрационную и другие. В настоящее время название этих функций несколько изменено, некоторые из них объединены. Мы приводим их в соответствии с классификацией А. В. Лапо (1987).

1. Энергетическая. Связана с запасанием энергии в процессе фотосинтеза, передачей ее по цепям питания, рассеиванием. Эта функция - одна из важнейших и будет подробнее рассмотрена в разделе IV.4 - энергетика экосистем.

Энергетическая функция живого вещества нашла отражение в двух биогеохимических принципах, сформулированных В.И.Вер­надским. В соответствии с первым из них геохимическая биогенная энергия стремится в биосфере к максимальному проявлению. Второй принцип гласит, что в процессе эволю­ции выживают те организмы, которые своей жизнью увели­чивают геохимическую энергию.

2. Газовая - способность изменять и поддерживать определен­ный газовый состав среды обитания и атмосферы в целом. В час­тности, включение углерода в процессы фотосинтеза, а затем в цепи питания обусловливало аккумуляцию его в биогенном веществе (органические остатки, известняки и т. п.) В результате этого шло постепенное уменьшение содержания углерода и его соединений, прежде всего двуокиси (СО2) в атмосфере с десятков процентов до современных 0,03%. Это же относится к накоплению в ат­мосфере кислорода, синтезу озона и другим процессам.

С газовой функцией в настоящее время связывают два перелом­ных периода (точки) в развитии биосферы. Первая из них относит­ся ко времени, когда содержание кислорода в атмосфере достигло примерно 1% от современного уровня (первая точка Пастера). Это обусловило появление первых аэробных организмов (способных жить только в среде, содержащей кислород). С этого времени вос­становительные процессы в биосфере стали дополняться окисли­тельными. Это произошло примерно 1,2 млрд. лет назад. Второй переломный период в содержании кислорода связывают со време­нем, когда концентрация его достигла примерно 10% от современ­ной (вторая точка Пастера). Это создало условия для синтеза озо­на и образования озонового экрана в верхних слоях атмосферы, что обусловило возможность освоения организмами суши (до этого фун­кцию защиты организмов от губительных ультрафиолетовых лучей выполняла вода, под слоем которой возможна была жизнь).

3. Окислительно-восстановительная. Связана с интенсифи­кацией под влиянием живого вещества процессов как окисления, благодаря обогащению среды кислородом, так и восстановления прежде всего в тех случаях, когда идет разложение органических веществ при дефиците кислорода. Восстановительные процессы обычно сопровождаются образованием и накоплением сероводо­рода, а также метана. Это, в частности, делает практически без­жизненными глубинные слои болот, а также значительные придон­ные толщи воды (например, в Черном море). Данный процесс в связи с деятельностью человека прогрессирует.

4. Концентрационная - способность организмов концентриро­вать в своем теле рассеянные химические элементы, повышая их содержание по сравнению с окружающей организмы средой на не­сколько порядков (по марганцу, например, в теле отдельных орга­низмов - в миллионы раз). Результат концентрационной деятельно­сти - залежи горючих ископаемых, известняки, рудные месторож­дения и т. п. Эту функцию живого вещества всесторонне изучает наука биоминералогия. Организмы-концентраторы используются для решения конкретных прикладных вопросов, например для обога­щения руд интересующими человека химическими элементами или соединениями.

5. Деструктивная - разрушение организмами и продуктами их жизнедеятельности как самих остатков органического вещества, так и косных веществ. Основной механизм этой функции связан с круговоротом веществ. Наиболее существенную роль в этом от­ношении выполняют низшие формы жизни - грибы, бактерии (дес­трукторы, редуценты).

6. Транспортная - перенос вещества и энергии в результате активной формы движения организмов. Часто такой перенос осу­ществляется на колоссальные расстояния, например, при миграци­ях и кочевках животных. С транспортной функцией в значительной мере связана концентрационная роль сообществ организмов, на­пример, в местах их скопления (птичьи базары и другие колониаль­ные поселения).

7. Средообразующая. Эта функция является в значительной мере интегративной (результат совместного действия других фун­кций). С ней в конечном счете связано преобразование физико-хи­мических параметров среды. Эту функцию можно рассматривать в широком и более узком планах.

В широком понимании результатом данной функции является вся природная среда. Она создана живыми организмами, они же и под­держивают в относительно стабильном состоянии ее параметры практически во всех геосферах.

В более узком плане средообразующая функция живого веще­ства проявляется, например, в образовании почв. В. И. Вернадс­кий, как отмечалось выше, почву называл биокосным телом, под­черкивая тем самым большую роль живых организмов в ее созда­нии и существовании. Роль живых организмов в образовании почв убедительно показал Ч. Дарвин в работе «Образование раститель­ного слоя земли деятельностью дождевых червей». Известный ученый В. В. Докучаев назвал почву «зеркалом ландшафта», под­черкивая тем самым, что она продукт основного ландшафтообразующего элемента - биоценозов и, прежде всего, растительного покрова.

Локальная средообразующая деятельность живых организмов и особенно их сообществ проявляется также в трансформации ими метеорологических параметров среды. Это прежде всего относит­ся к сообществам с большой массой органического вещества (био­массой). Например, в лесных сообществах микроклимат существен­но отличается от открытых (полевых) пространств. Здесь меньше суточные и годовые колебания температур, выше влажность воз­духа, ниже содержание углекислоты в атмосфере на уровне полога, насыщенного листьями (результат фотосинтеза), и повышенное ее количество в припочвенном слое (следствие интенсивно идущих процессов разложения органического вещества на почве и в верх­них горизонтах почвы).

8. Наряду с концентрационной функцией живого вещества выде­ляется противоположная ей по результатам - рассеивающая. Она проявляется через трофическую (питательную) и транспортную деятельность организмов. Например, рассеивание вещества при выделении организмами экскрементов, гибели организмов при раз­ного рода перемещениях в пространстве, смене покровов. Железо гемоглобина крови рассеивается, например, кровососущими насе­комыми и т. п.

Важна также информационная функция живого вещества, вы­ражающаяся в том, что живые организмы и их сообщества накап­ливают определенную информацию, закрепляют ее в наследствен­ных структурах и затем передают последующим поколениям. Это одно из проявлений адаптационных механизмов.

В обобщающем виде роль живого вещества сформулирована гео­химиком А. Н. Перельманом в виде «Закона биогенной мигра­ции атомов» (В. И. Вернадского): «Миграция химических элементов на земной поверхности и в биосфере в целом осу­ществляется или при непосредственном участии живого вещества, или же она протекает в среде, геохимические осо­бенности которой обусловлены живым веществом...» В со­ответствии с этим законом понимание процессов, протекающих в биосфере, невозможно без учета биотических и биогенных факто­ров. Воздействуя на живое население Земли, люди тем самым из­меняют условия миграции атомов, а следовательно, воздействуют на основополагающие геологические процессы.