ПРИМЕЧАНИЯ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 
221 222 223 224 225 226 227 228 229 230 231 232 233 234 
РЕКЛАМА
<

1 Лаплас Пьер — французский математик, физик и астроном. Родился в Нормандии. Учился в школе монашеского ордена бенедиктинцев. Занимался математикой, публиковался в математическом журнале Ж. Лагранжа. В 1771 г. по рекомендации Даламбера стал профессором Военной школы в Париже. В 1790 г. был назначен председателем Палаты мер и весов. После прихода к власти Наполеона занимал пост министра внутренних дел, получил титул графа. Основные астрономические работы Лапласа посвящены небесной механике. Этот термин впервые употребил сам Лаплас в названии пятитомного фундаментального труда Трактат о небесной механике (1798—1825). Он решил сложные проблемы движения планет и их спутников, в частности Луны; разработал теорию возмущений траекторий планет, Солнца и Луны; предложил новый способ вычисления орбит; доказал устойчивость Солнечной системы; открыл причины ускорения в движении Луны. В истории развития космологии важнейшее место занимает знаменитая гипотеза Лапласа о формировании Солнечной системы из газовой туманности, которую он сформулировал в сочинении Изложение системы мира (1796). Физические исследования Лапласа относятся к областям молекулярной физики, теплоты, акустики, оптики. В 1821 г. он установил закон изменения плотности воздуха в зависимости от высоты (барометрическая формула). В 1806—1807 гг. разработал теорию капиллярных сил, вывел формулу для определения капиллярного давления (формула Лапласа). С помощью сконструированного им вместе с А. Лавуазье ледяного калориметра определил удельные теплоемкости многих веществ. Лаплас — автор фундаментальных работ по математике и математической физике, наиболее значительная среди них — трактат Аналитическая теория вероятностей (1812), в котором можно обнаружить многие позднейшие открытия теории вероятности, сделанные другими математиками. В нем, в частности, рассмотрены некоторые вопросы теории игр, теорема Бернулли и ее связь с интегралом нормального распределения, теория наименьших квадратов, вводится «преобразование Лапласа», которое позже стало основой операционного исчисления. Широко известно уравнение Лапласа в частных производных, применяющееся в теории потенциала, тепло-и электропроводности, гидродинамике. образование, благодаря которому он познал образ мышления схоластики и духовное богатство гуманизма, он получил в иезуитской школе Ла Флеш. После этого последовали длительные путешествия по Европе. Затем в течение двух десятилетий он уединенно жил в Голландии; за год до своей смерти по приглашению шведской королевы Христины переехал в Стокгольм. Его философские размышления приводят к тому, что он начинает сомневаться во всем: и в традиционных мнениях, и в истинности чувственного познания. Несомненным остается для него лишь факт сомнения как способа мышления. Декарт, таким образом, делает вывод: «Я мыслю, следовательно, я существую» («Cogito ergo sum»). Среди представлений человеческого мышления Декарт находит также идею Бога. Эту идею, утверждает он, я не мог дать себе сам, ибо она заключает в себе более совершенную реальность, чем та, на которую я могу сам претендовать; причиной этой идеи должен быть Сам Бог; следовательно, идея Бога есть доказательство бытия Божия. Ясность и отчетливость идеи Бога, согласно Декарту, позволяет сделать вывод о том, что и все другое, познаваемое ясно и отчетливо, является истинным. Мы имеем также ясное и отчетливое представление о протяженном телесном мире: следовательно, существует и этот мир, основным свойством которого является протяженность. И следовательно, можно считать доказанным существование Бога, а также мышления и протяженности, то есть материального мира. Бог есть несозданная субстанция; мышление и протяженность суть созданные субстанции. Мышление и протяженность создают раздвоенность человека: он есть «мыслящая субстанция» (res cogitans). С точки зрения устройства своего тела человек, как и прочие живые существа, есть машина. Материя состоит из мельчайших телец (corpuscula), которые различаются по форме и величине. Количество этих телец и количество движения в универсуме (мир как целое) остаются неизменными. Вне связи со всей этой рационалистически-механистической сферой Декарт создал учение о характере De passionibus animal (Страсти души).

Влияние философии Декарта сохранилось вплоть до настоящего времени. Вся современная техника возникла благодаря тому, что Декарт поставил людей по отношению к природе на такую позицию, с которой только и открываются возможности полного завоевания природы. Декарт научил людей думать так, что они смогли создать технику. Основные сочинения: Discours de la methode, pour bien conduire la raison et chercher la write dans les sciences (1637); Meditationes de prima philosophia (1641). Эти работы Декарта переведены на русский язык (см.: Декарт Р. Сочинения. В 2 т. М.: Мысль, 1989 — том 1, 1994 — том 2).

5 Лейбниц Готфрид — немецкий философ, физик, математик, историк и дипломат; один из самых универсальных ученых XVII века. Сначала находился под влиянием своих учителей — Якоба Томазия (Лейпциг) и Эргарда Вейгеля (Йена), позднее — канцлера курфюрста майнцского Иоганна Христиана фон Бойнебурга; при нем Лейбниц состоял на службе у курфюрста (этим объясняются его усилия установить согласие между протестантской и католической церковью), тогда же, налаживая связи с учеными, Лейбниц фактически заложил фундамент Академии наук в Берлине, Вене и Петербурге. «Его жизнь протекала в неутомимой деятельности, но эта деятельность не была целеустремленной, а жизнь его была "монадической", уединенной, вне сложившегося круга профессуры; однако Лейбниц всегда был живо связан со многими исследователями. Так случилось, что он писал свои работы только по какому-либо определенному поводу — немногие резюмирующие наброски и бесчисленные письма. Далеко не все из того, что им хранилось в Ганновере, было опубликовано» (Г. Крюгер). Период до 1680 г. в жизни Лейбница был этапом его освобождения от неосхоластики. До этого времени он занимался политикой, теологией, естественными науками и математикой. Только после 1680 г. он выступает со своими философскими работами и мыслями, облеченными в форму писем и журнальных статей. Вышедшая при его жизни Теодицея (Theodizee), объясняющая и защищающая этот мир как лучший из возможных и Бога как его творца, представляет собой, по сути, теологию (естественную). Философское сочинение Новый опыт о человеческом разуме появилось в печати только после смерти Лейбница.

Взгляды Лейбница не раз претерпевали изменения, но они шли в направлении создания законченной системы, примиряющей противоречия, стремящейся учесть все детали действительности, как наглядной, так и абстрактной, системы, которую Лейбниц, конечно, представлял лишь фрагментарно. Основные мысли Лейбница:

• разумная соразмерность и божественная связанность Вселенной;

• значительность индивидуального, личного в этой Вселенной;

• гармоничность Вселенной в целом и в индивидуальном;

• количественно и качественно бесконечное многообразие Вселенной;

• динамичность основного состояния Вселенной.

Исходя из схоластического учения о всеобщей метафизической сущности (formae substantiates), Лейбниц поднимается до принципа наличия творческого мышления у индивидуальных субстанций. Математический метод здесь казался ему вполне достаточным, пока он не осознал его ограниченность. В тесной связи с учением Декарта о ясном и отчетливом познании (или мышлении), нерешенными проблемами которого он занимался, Лейбниц развивает аналитическую теорию о мыслящем, или познающем, сознании. В области естественнонаучной он отказывается от механики и подходит к энергетике (в этом сыграли свою роль результаты наблюдений с помощью микроскопа жизненных процессов, протекающих в организме). С другой стороны, он дошел до разграничения абстрактных истин и истинности фактов. Наиболее знаменито учение Лейбница о монадах (монадология); монадами он называет простые телесные, душевные, более или менее сознательные субстанции; их действующие силы заключаются в представлениях. Различие монад состоит в различии их представлений. Бог есть первомонада, все другие монады — ее излучения. То, что нам кажется телом, в действительности есть совокупность монад. Душа — тоже монада. Минералы и растения — как бы спящие монады с бессознательными представлениями, души животных обладают ощущениями и памятью, человеческие души способны к ясным и отчетливым представлениям, Бог же обладает исключительно адекватными, то есть наиболее осознанными и наиболее объективными, представлениями. Процесс представления каждой монады замкнут в самом себе; ничто из нее не выходит, и ничто не входит в нее. Учение Лейбница о монадах дополняется его учением о «предустановленной гармонии». Согласно его концепции, Бог создал все субстанции таким образом, что, следуя с полной самостоятельностью закону своего внутреннего развития, каждая из них одновременно в каждое мгновение находится в точном соответствии со всеми другими. И учение о монадах, и учение о предустановленной гармонии имеют значение, по Лейбницу, для всех существ телесного, душевного и духовного склада, как для них самих, так и для их отношений между собой.

4 Моно Жак — французский биохимик, микробиолог. Окончил естественный факультет Парижского университета, где в дальнейшем работал. Труды о росте бактерий, индукции и репрессии бактериальных ферментов. Автор гипотез (совместно с Ф. Жакобом) о переносе при участии информационной РНК генетической информации с ДНК на рибосомы и о механизме генетической регуляции синтеза белка у бактерий (концепция оперона). Член ряда зарубежных академий, лауреат Нобелевской премии (1965, совместно с Ф. Жакобом и А. Львовым). В области философии и методологии науки считал себя последователем К. Поппера. Сочинения: Genetic regulatory mechanisms in the synthesis of proteins (1961; совместно с Ф. Жакобом); Le promoteur element genetique necessaire a L 'expression d'un operon (1964).

5 Хакинг (Хэкинг) Ян — канадский философ, представитель научного реализма. С целью экспериментального обоснования научного реализма предпринял попытку обобщить экспериментальный материал по молекулярной биологии и ядерной физике. Опираясь на историю развития теории вероятности, показал, что структурные особенности и основная проблематика этой теории предопределены способом разработки теории вероятности, который сложился в середине XVII века. В противовес формалистскому подходу Карнапа к логике статистического вывода выступает в защиту прагматического анализа этой проблематики, стремится дать эмпирическое обоснование логики статистического вывода. Сочинение: Representing and Intervening. Introductory topics in the philosophy of natural science (1983; рус. пер. Представление и вмешательство: Введение в философию естественных наук. М.: Логос, 1998).

6 Байрес (Бейес) Томас — английский математик. Ученик де Муавра, один из выдающихся основателей математической статистики. Байес родился в Лондоне, в семье одного из первых шести пресвитерианских священников Англии. По существовавшим у кальвинистов правилам, как сын духовного лица, Байес получил сугубо домашнее образование, рано проявил способности к математике, однако пошел по стопам отца и в 1720-е гг. стал священником пресвитерианского прихода в городке Танбридж-Уэллс. На духовной службе Байес оставался вплоть до 1752 г., после отставки продолжал жить в Танбридж-Уэллсе, здесь же и скончался 17 апреля 1761 г.

Среди современных ему английских ученых Байес был человеком весьма известным. В 1742 г. избран членом Лондонского королевского общества, даже несмотря на тот факт, что не опубликовал ни одной работы по математике. Более того, при жизни Байеса под его именем не вышло ни одной научной работы. В 1736 г. Байесом анонимно была опубликована статья Введение в теорию флюксий, или В защиту математиков от нападок автора «Аналитика». Здесь Байес защищал Ньютонову теорию дифференциального исчисления от атаки Джорджа Беркли, пытавшегося с метафизических позиций раскритиковать «неправильные», на его взгляд, логические основания мощнейшей математической теории.

Что же касается фундаментального исследования Байеса в области теории вероятности, то оно было изложено им в Опыте о решении задачи из теории случайных событий. Эту работу математика лишь после его смерти обнаружил Ричард Прайс, который и переслал статью в академию. В 1763 г. Опыт... был опубликован в Трудах Лондонского королевского общества.

Теорема Байеса имеет дело с расчетом вероятности верности гипотезы в условиях, когда на основе наблюдений известна лишь некоторая частичная информация о событиях. Другими словами, по формуле Байеса можно более точно пересчитывать вероятность, беря в учет как ранее известную информацию, так и данные новых наблюдений. Главная особенность теоремы Байеса в том, что для ее практического применения обычно требуется огромное количество вычислений-пересчетов, а потому расцвет методов Байесовых оценок пришелся как раз на революцию в компьютерных и сетевых информтехнологиях. Конечно, эффективные методы статистических оценок интенсивно применяли и ранее, в основном военные экспертных или криптоаналитических системах, но по-настоящему широкая популярность и «мода на Байеса» пришла в 1990-е гг.

7 Лоренц Эдвард — американский метеоролог. С 1962 г. до своей отставки в 1987 г. был профессором Массачусетского технологического института. Открыл так называемый странный аттрактор, именуемый «бабочкой Лоренца». В 1962 г. он нашел сравнительно несложную систему нелинейных дифференциальных уравнений, с помощью которой пытался описать конвекцию в атмосфере. Выстроенный по точкам график траектории, удовлетворяющей таким уравнениям, образовал чрезвычайно необычный для физики той поры объект — странный аттрактор. Аттракторами называют точки или замкнутые линии, притягивающие к себе все возможные траектории поведения системы. В странном же аттракторе некоторая ограниченная область заполняется непредсказуемо движущейся точкой, траектория которой порождает фигуру дробной размерности (фрактал). При этом точка в странном аттракторе совершает весьма сложные движения, хаотически перепрыгивая вперед и назад между двумя центрами-фокусами. Со временем было обнаружено, что найденный Лоренцом закон имеет принципиально важный характер, поскольку описывает процессы не только в турбулентных потоках, но и в лазерной физике, гидродинамике, кинетике химических реакций, биологии. Сам термин «странный аттрактор» ввел в 1971 г. Дэйвид Рюэль. Сочинения: Deterministic nonperiodic flow (1963); The nature and theory of the general circulation of atmospliere (1967); Three approaches to atmospheric predictability (1969); Nondeterministic theories of climate change (1976); Can chaos and intransitivity lead to interannual variability? (1990). На русском языке с данной темой (бифуркации, теория катастроф) можно познакомиться благодаря трудам видного математика В. Арнольда: Теория катастроф (М.: Наука, 1990. Издание 3-е, испр. и доп.); Особенности дифференцируемых отображений (М.: Наука, 1982—1984).

8 Явление чувствительности к начальным данным было обнаружено в 1903 г. основоположником теории хаоса французским математиком Анри Пуанкаре, чему предшествовала открытая Жаком Адама-ром теорема Адамара-Перрона. При попытке заранее рассчитать орбиты планет с учетом их взаимодействий оказалось, что минимальное изменение используемых в расчетах входных величин приводило в конечном итоге к совершенно различным результатам.

9 Пригожин Илья — русско-бельгийский естествоиспытатель, физик, основоположник термодинамики неравновесных процессов. В 1942 г. получил степень доктора физики в Свободном университете в Брюсселе. Директор Международного института физики и химии (с 1962 г.) и Центра статистической механики и термодинамики в Университете Техаса (с 1987 г.). В 1977 г. стал лауреатом Нобелевской премии за работы по термодинамике неравновесных систем. В настоящее время возглавляет основанную им группу физиков и представителей различных областей научного знания в Брюссельском университете («Брюссельская школа»), которая разрабатывает основы синергетического подхода к изучению мира.

Синергетическая теория, получившая в настоящее время признание в мировой науке, — новый концептуально-аналитический подход к миру, для которого характерна фундаментальность методологического содержания. Она синтезирует целый ряд фундаментальных выводов естественнонаучной и социальной мысли последнего столетия (теории вероятности, информационно-кибернетического подхода, структурного функционализма, теории диалогового взаимодействия и др.), вырабатывая вместе с тем принципиально новую методологию анализа, которая может быть использована в изучении как физического мира, так и живой материи, а также социальных систем и культуры в целом. Синергетическая методология обеспечивает возможность поиска принципов самоорганизации сложных систем, закономерностей их эволюции и взаимодействия. Она базируется на введенном Пригожиным понимании необратимости времени, что связано с отказом от ньютоновского подхода ко времени как к феномену обратимому и с коренным переосмыслением понятия энтропии. В то время как в классической термодинамике понимание энтропии неизбежно приводило к равновесию и тепловой смерти Вселенной, в синергетическом понимании динамической неустойчивости энтропия утрачивает характер жесткой альтернативности, возникающей перед системами в процессе эволюции. Согласно синергетическому подходу, одни системы вырождаются в процессе эволюции, другие развиваются по восходящей линии. Необратимость системы начинается тогда, когда сложность эволюционирующей системы превосходит некий порог. Такой подход к эволюции позволяет биологии и физике находить множество аналитических точек соприкосновения.

Основные сочинения на русском языке: Неравновесная статистическая механика (М.: Мир, 1964); Самоорганизация в неравновесных системах (совместно с Г. Николисом; М.: Мир, 1979); От существующего к возникающему (М.: Наука, 1985); Порядок из хаоса: Новый диалог человека с природой (совместно с Н. Стенгерсом; М.: Наука, 1986); Познание сложного. Введение (совместно с Г. Николисом; М.: Мир, 1990).